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This article deals with particle creation and the production of specific entropy
per baryon in the early universe, which is regarded as a thermodynamical ly open
system in the sense of Prigogine. The modified general relativity (MGR) theory
of Rastall, Al-Rawaf, and Taha is employed. It contains an extra independent
constant h which is peculiar to the non-Newtonian regime, besides the usual
gravitational constant. Usual general relativity (GR) appears here as a special
case for h 5 1. With a modified thermodynamic energy conservation law, it is
possible to obtain an equation for the expansion scalar by incorporating the epoch
dependence of elementary particle masses. The epoch dependence of particle
masses for the Robertson ±Walker (RW) universe appears as a consequence of
hadronic matter extension in a microlocal space-time regarded as anisotropic and
Finslerian. The governing equations in the present formalism specify the equation
of state and give a solution for the expansion scalar. This solution represents a
mild inflationary phase in the very early universe. It is also shown that there are
no `turn-on’ and `turn-off ’ problems for this mild inflation. It can account for
particle creation and production of specific entropy per baryon consistent with
the observation. The production of specific entropy per baryon is also considered
here in the MGR framework with the introduction of viscous pressure; the
calculated value is in good agreement with observation for the GR case, but for
the MGR case, in order to have its value within observational limits, h must lie
in the range 0.75 # h # 1. It is also argued that this formalism does not have
horizon and flatness problems.

1. INTRODUCTION

The theoretical foundations of covariant energy-momentum conservation

in curved space-time were put into doubt by Rastall (1972). He modified it

with the assumption that the divergence of the energy-momentum tensor might

be dependent on the curvature. Actually, it was thought to be proportional to
the gradient of the scalar curvature. This scalar curvature, of course, vanishes
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for flat space-time, and thus in special relativity the conservation of energy-

momentum is restored. The modified general relativity (MGR) thus obtained

is found to be equivalent to the gravitational field equations derived recently
by Al-Rawaf and Taha (1996a, b) with the use of conventional heuristic

methods (Weinberg, 1972), but not requiring energy-momentum conservation.

The field equations of the MGR of Rastall, Al-Rawaf, and Taha cannot be

derived from a variational principle. However, a prototype of this MGR can

be derived from a variational principle, but it contains a variable gravitational

`constant’ (Smalley, 1984). Interestingly, the formulation of Al-Rawaf and
Taha contains two independent fundamental constants, one of which is the

usual Newton constant and the other is an adjustable parameter h satisfying

0 # h # 1. This constant h may be regarded as characteristic of the non-

Newtonian regime, and standard general relativity (GR) is obtained for h 5
1. The nonconservat ion of energy-momentum in MGR may be looked at in

a different manner as in recently proposed theories (OÈ zer and Taha, 1986;
Freese et al., 1987; Chen and Wu, 1990; Silveira and Waga, 1994; Abdel-

Rahman, 1995) of decaying vacuum cosmologies in which a time-dependent

cosmological `constant’ is introduced. These theories are also not deducible

from a variational principle. Instead of matter energy-momentum conserva-

tion, a sum of tensors corresponding to the usual energy-momentum and a
`vacuum energy-momentum’ was considered to be conserved. One can regard

such conservation in MGR also, as Al-Rawaf and Taha (1996a, b) have

shown that MGR can indeed be molded into a model with a variable cosmolog-

ical `constant.’

An interesting observational consequence derived from MGR applied

to a matter-dominated Robertson±Walker (RW) universe is that it can resolve
the conflict between the ages of the oldest stars in our galaxy and that of

the universe itself, as derived from the measurement of the Hubble constant

from recent observations (Pierce et al., 1994). In fact, as shown by Al-Rawaf

and Taha (1996a, b), there is no such problem for h # 0.6 and the present

value of the matter density parameter V in the range 0.1 # V # 0.25 Abdel-

Rahman (1997) applied MGR in the radiation-dominated era of the universe
and discussed the implications of the nucleosynthesis contraints for the age

of the universe. He also showed the consistency of the matter-dominated

model developed in the framework of MGR with neoclassical cosmological

tests. It was also shown that the baryon asymmetry in the early universe was

significantly smaller than at present.

The purpose of the present paper is to examine the very early universe
in the framework of MGR. The early universe is taken here to be a thermody-

namically open system which can account for particle creation as well as

entropy production (De, 1993a). In fact, such an early universe as a thermody-

namically open system was considered by Prigogine (1989), who modified
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the thermodynamic energy conservation law for homogeneous and isotropic

universes. An early universe with bulk viscosity also has been considered

(De, 1997b). It was shown that the presence of bulk viscous pressure in the
early universe can account for the observed specific entropy per baryon in

the universe today. Apart from considering the early universe as an open

system, the epoch dependence of the masses of elementary particles has

been taken into account. The epoch dependence of particle masses, which is

significant only in the early period of the evolution of the universe, is in fact

a consequence of a Finsler geometric approach to building up the internal
symmetry of hadrons considered earlier by De (1991, 1997a). This geometri-

cal approach provides the field equations for the fundamental particles and

also the `dynamics’ of hadrons (De, 1986). Here we discuss the implications

of MGR in a thermodynamically open early universe with particles having

epoch-dependent masses. We will be shown that a `mild’ inflation solution

can be found which has no problem with `turn-on’ and `turn-off.’
We begin in Section 2 with the basic equations of MGR. The equations

for the thermodynamically open universe are derived there in the context of

MGR. In Section 3, the mild inflation solution is obtained. The specific

entropy per baryon is also given. In Section 4, we show how the viscous

pressure in the present MGR case can account for the specific entropy per
baryon. This can be compared with the value obtained in Section 3 as well

as with that in De (1997b). In Section 5, the results of this paper are summed

up with some concluding remarks.

2. EARLY UNIVERSE WITH MODIFIED GENERAL
RELATIVITY

The gravitational field equations in MGR are (Al-Rawaf and Taha,

1996a)

R m n 2
4 2 h

6(2 2 h )
Rg m n 5 2

8 p G

3 1 1 1
2

h 2 T m n (1)

where h is a constant in the interval [0, 1]. The value of h 5 1 corresponds

to GR.

Here we consider a spatially flat (k 5 0) RW universe with the metric

ds2 5 dt2 2 a2(t)(dr 2 1 r 2 d u 2 1 r 2sin2 u d f 2) (2)

using the natural units c 5 " 5 l.

The energy-momentum tensor for the universe as an adiabatic perfect

fluid is given by
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T m n 5 2 pg m n 1 ( r 1 p)u m u n (3)

where r and p are the density and pressure, respectively, and u m 5 (1, 0, 0,

0) is a unit vector in the time direction.

We get from the field equations (1) the following equations for the
MGR cosmology:

aÇ 2

a2 5
K

3 h
[ r 2 (1 2 h )p] (4)

aÈ

a
5 2

K

6 h
[ h r 1 (4 2 h )p] (5)

where

K 5 8 p G

and the dot represents differentiation with respect to time. The following

Bianchi identity follows from (4) and (5):

d

da
{a3[ r 1 ( h 2 1) p]} 1 a2[( h 2 1) r 1 (5 2 2 h )p] 5 0 (7)

or, in differential form,

d{a3[ r 1 ( h 2 1)p]} 1
1

3
[( h 2 1) r 1 (5 2 2 h )p] d(a3) 5 0 (8)

For h 5 1, we get the usual conservation law for GR,

d( r a3) 1 pd(a3) 5 0 (9)

Prigogine (1989) modified this conservation law for the universe consid-

ered as a thermodynamically open system. Specifically, equation (9) is modi-

fied to the following thermodynamic energy conservation law for a

homogeneous and isotropic universe:

d( r a3) 1 pd(a3) 2
h

n
d(na3) 5 dQ (10)

where h 5 r 1 p is the enthalpy per unit volume and n 5 N/V, where N is

the number of particles in a given volume V, that is, the comoving volume

given by V 5 a3. For adiabatic transformation we have dQ 5 0 and we get

d( r a3) 1 pd(a3) 2
h

n
d(na3) 5 0 (10a)
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From this conservation law it follows that

r Ç 5
nÇ

n
( r 1 p) (11)

which replaces the usual Einstein equation (Bianchi identity for homogeneous

and isotropic universe), that is,

r Ç 5 2 3H( r 1 p) (12)

where H is the Hubble function given by H 5 aÇ /a.
Of course, the other Einstein equation corresponding to equation (4)

with h 5 1 is still valid for this case of a thermodynamically open universe.

This equation is

K r 5 3H 2 (13)

One can make an alternative interpretation of the conservation law (10a)
or (11) by retaining the usual form of the conservation law (Bianchi identity)

with a phenomenological pressure pÃinstead of the above true thermodynamic

pressure p. That is,

d( r a3) 5 2 pÃd(a3) (14)

where the two pressures pÃand p are related by

pÃ5 p 1 pc (15)

Here, pc represents a pressure, negative or zero, and corresponds to the

creation of particles. In fact, when pc 5 0 the creation of particles stops and

in this case pÃ5 p. Consequently, the conventional law of conservation holds,

or in other words, the usual Einstein equations of GR hold. The pressure pc

is given by

pc 5 2
r 1 p

3H

SÇ

S
(16)

where S is the entropy. Prigogine (1989) also showed that

SÇ

S
5

NÇ

N
5

nÇ

n
1 u (17)

where u 5 3H is the expansion scalar.

We shall modify the Bianchi identity (8) of MGR for the early universe
considered as a thermodynamically open system to account for the creation

of particles. This modification is made in the same manner as above, that is,

as for GR. For adiabatic transformation (dQ 5 0) the conservation law (8)

changes into the following form:
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d{a3[ r 1 ( h 2 1)p]} 1
1

3
[( h 2 1) r 1 (5 2 2 h )p]d(a3)

2
h

n
d(na3) 5 0 (18)

Equation (4) remains valid for this case of a thermodynamically open
early universe and becomes the usual Einstein equation (13) for GR if h 5
1. From (18), it follows that

r Ç 1 ( h 2 1) pÇ 2 ( p 1 r ) F nÇ

n
2 ( h 2 1)

u
3 G 5 0 (19)

Now, in the particle production era of the very early universe the energy

density r 5 r m 1 r g should be dominated by the matter density r m , that is,

r m . . r g , the radiation energy density. Consequently, we can take

r 5 mn (20)

where m is the particle mass. Here, for simplicity, the masses of all types of

particles created are assumed to be the same. The mass of the particle has

been taken to be epoch dependent. In fact, in the previous consideration of
hadronic matter extension in microlocal space-time regarded as an anisotropic

Finsler space (De, 1991, 1997a), the epoch dependence of masses of elemen-

tary particles appeared as an important consequence. For the universe

described by the background metric of RW type this epoch dependence of

masses plays a significant role in the very early stage of its evolution. The

actual relation obtained there that gives rise to the mass of the particle at an
epoch time t is given by

m 5 mÅ [1 1 2 a H(t)] (21)

where a 5 0.26 3 10 2 23 sec and mÅ represents the `inherent’ mass of the

particle. This inherent mass is equal to the present mass of the particle with

a very high degree of accuracy. For massless particles (that is, for particles

with no inherent mass) the corresponding relation is

m 5 2 a mÃH(t) (22)

where mÃis the mass of the particle at the epoch time t 5 a .

Now, equations (4) and (19)±(21) together with the equation of state

p 5 F( r ) [ r f( u ) (23)

are the governing equations that describe the early evolution of the thermody-

namically open universe with MGR.
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Using (20) and the equation of state (23), we have from (19)

( h 2 2)f( u )
r Ç

r
1 ( h 2 1)f 8( u ) u Ç 1 [1 1 f( u )] F mÇ

m
1 ( h 2 1)

u
3 G 5 0 (24)

Again, from (21) it follows that

mÇ

m
5

2 a u Ç

3 1 2 a u
(25)

and from (4), by using (23), we get

r 5
h u 2

3K[1 1 ( h 2 1)f( u )]
(26)

Consequently, we have

r Ç

r
5

2 u Ç

u
2

( h 2 1)f 8( u ) u Ç

1 1 ( h 2 1)f( u )
(27)

With the use of equations (25) and (27) we obtain from (24) the following

equation:

( h 2 2)f( u ) F 2 u Ç

u
2

( h 2 1)f 8( u ) u Ç

1 1 ( h 2 1)f( u ) G 1 ( h 2 1)f 8( u ) u Ç

1 [1 1 f( u )] F ( h 2 1)
u
3

1
2 a u Ç

3 1 2 a u G 5 0 (28)

Again, as pointed out earlier, the creation era of the very early universe is
matter-dominated, and relation (20) holds for the energy density; consequently

it follows that

r a3 5 Nm (29)

By using (21) and (26), we get the number of particles in a comoving volume

V 5 a3 in terms of the expansion scalar u as follows:

N 5
h u 2a3

KmÅ (3 1 2 a u )[1 1 ( h 2 1)f( u )]
(30)

Equations (28) and (30) describe the `creation-era’ of the early universe in

the MGR formulation.

3. MILD INFLATION IN THE EARLY UNIVERSE

Let us first consider the GR case in the thermodynamically open early

universe. The governing equations for this case are (11), (13), and (21)
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together with the relation (20) for energy density, since the universe in its early

era was matter-dominated. From these equations, the following equations can

be deduced (De, 1993a) if the equation of state (23) is incorporated:

r Ç

r
5

2 u Ç

u
5

nÇ

n
[1 1 f( u )] 5

mÇ

m

1 1 f( u )

f( u )
with

mÇ

m
5

2 a u Ç

3 1 2 a u
(31)

These equations have a trivial solution

u Ç 5 r Ç 5 nÇ 5 mÇ 5 0

which represents the usual inflation. Apart from this trivial solution, these

equations cannot determine the expansion scalar u . On the other hand, if u Ç Þ
0, one can determine the equation of state, that is, the function f( u ) can be

specified. It is

f( u ) 5
a u

3 1 a u
(32)

The expansion scalar u , however, may be specified with the requirement that

pÃ5 0 in equation (14), as this era of the universe is matter-dominated. In

fact, this phenomenological zero pressure ushers in a matter-dominated RW

universe with the scale factor a(t) } t2/3. Note that for pÃ5 0, pc 5 2 p 5
2 f( u ) r . This negative pressure pc is responsible for particle creation in the
era t , , a . On the other hand, as t increases, f( u ) decreases and in fact,

f( u ) ® 0 as t becomes large. It was argued in De (1993a) that the universe

around the epoch time t 5 a , regarded as a transition epoch, becomes a

radiation-dominated RW universe, the usual universe according to the stan-

dard cosmology and with no particle creation. In fact, the particles at this

transition epoch become relativistic and contribute to the radiation-energy
density, that is, r 5 r g , f( u ) 5 1/3, pc 5 0, and consequently a(t) } t1/2.

Now, for MGR we rewrite equation (28) in the following form:

2 u Ç H a [1 1 f( u )]

3 1 2 a u
2

f( u )

u J
1 ( h 2 1)H f( u ) u Ç F 2

u
2

( h 2 2)f 8( u )

1 1 ( h 2 1)f( u ) G
1 f 8( u ) u Ç 1

u
3

[1 1 f( u )] J 5 0 (33)

Obviously, for h 5 1, that is, for GR, we arrive at the same results as stated

above, that is, either u Ç 5 0 or the specified equation of state p 5 f( u ) r , with

f( u ) given by (32). The usual inflationary solution is represented by the trivial
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case u Ç 5 0. Of course, the actual physical conditions that might determine

the turning on and turning off of this inflationary paradigm are still obscure,

although it is now believed that they are similar to a symmetry-breaking phase
transition. The dominance of the vacuum energy field may be responsible for

triggering a symmetry breaking at the GUT energy scale. On the other hand,

the switching off of the inflationary phase is assumed to occur due to a

second phase transition in which the symmetry of the weak nuclear force

and electrostatic force is broken.

From equation (33) it is clear that one can determine in principle the
expansion scalar u and consequently the scale factor a(t) if one knows f( u ),

that is, the equation of state. Conversely, if one knows the character of the

expansion of the universe [either a(t) or u (t)], the equation of state can be

obtained from this equation. It is also clear that if h 5 1 or if h ® 1, the

equation of state can be specified and is given by (32). Thus, one may suppose

the same functional dependence f( u ) on the expansion scalar for all values
of h in [0, 1]. This provides us the following equation for u which decides

the nature of the early universe:

f( u ) u Ç F 2

u
2

( h 2 2)f 8( u )

1 1 ( h 2 1)f( u ) G 1 f 8( u ) u Ç 1
u
3

[1 1 f( u )] 5 0 (34)

This equation is valid for all values of h which satisfy 0 # h , 1. Since it
holds for h ® 1, one can take it to be valid for the case h 5 1, that is, for

GR. Of course, previously we have taken pÃ5 0 for this matter-dominated

creation era of the early universe to find the expansion scalar u . Such an

assumption of zero phenomenological pressure is not necessary. Equation

(34) gives the expansion scalar for all values of h in the range [0, 1].
Again, by using the expression for f( u ) from (32) in (34) we arrive at the

following equation:

u Ç F 3

u
2

4 a
3 1 2 a u

2
a

(1 2 h )(3 1 a u )

1
h 2 a

(1 2 h )(3 1 h a u ) G 1
1

a
5 0 for h Þ 1 (35)

and

u Ç

u F 2 a
3 1 2 a u

1
3 a

(3 1 a u )2 G 1
1

3
5 0 for h 5 1 (36)

One can find the solution of equation (35) by adjusting the constant of

integration suitably. In fact, here the integration constant has been taken to
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ensure that a u is very large for epoch times t , , a . Thus, for t , a we

can have

4( a u )3(3 1 h a u ) h /(1 2 h )

(3 1 2 a u )2(3 1 a u )1/(1 2 h ) 5 ( h h /(1 2 h ))e 2 t/ a (37)

For t , , a , for which a u is very large, we have from (37)

F 1 2
3

a u
2

3

(1 2 h ) a u G 1 1 3/(1 2 h ) a u

5 1 2
t

a

or

1 2
3

a u
2

3

(1 2 h ) a u
1

3

(1 2 h ) a u
5 1 2

t

a

Therefore,

u 5 3/t or H 5 1/t (38)

This gives the scale factor

a(t) } t (39)

This scale factor indicates a `mild inflation’ in the very early stage of evolution
of the universe. For h 5 1, we get from (36) the solution for u . By adjusting

the constant of integration in the same manner as above, we get the following

relation, which determines u for t , a :

4( a u )3

(3 1 2 a u )2(3 1 a u )
exp 1 3

3 1 a u 2 5 exp 1 2
t

a 2 (40)

Note that we can also arrive at the above solution from (37) by making

h ® 1. From (40), we can find u for t , , a . In fact, for this case of h 5
1, that is, for GR we get the same expansion scalar u and scale factor a(t)
as in (38) and (39), respectively. Thus, for all values of the parameter h in

the range 0 # h # 1 we have the mild inflation phase before the time a .

Now, from the conservation law (18) in MGR for the early universe as
a thermodynamically open system with adiabatic transformation, it is obvious

that the pressure pc is given by

pc 5 2
( p 1 r )(d/dt)(na3)

n(d/dt)(a3)
(41)

[cf. equations (10a), (16), and (17)].

Using (20), (25), and (27) we have from (41)
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pc 5 2
r [1 1 f( u )]

u H u Ç F 2

u
2

( h 2 1)f 8( u )

1 1 ( h 2 1)f( u )
2

2 a
3 1 2 a u G 1 u J (42)

Again, from equation (34) we find

[1 1 f( u )]f 8( u ) u Ç

1 1 ( h 2 1)f( u )
5 2 H 2f( u ) u Ç

u
1

u
3

[1 1 f( u )] J (43)

Using this, we have from (42) the following expression for the pressure pc:

pc 5 2
r
u H [1 1 f( u )] F 2 u Ç

u
3 1 a u
3 1 2 a u

1 u 1 ( h 2 1)
u
3 G (44)

1 ( h 2 1)
2f( u ) u Ç

u J
Finally, by using the expression for f( u ) from (32), we obtain

pc 5 2
r

3 1 a u F 2 u Ç

u 2 (3 1 h a u ) 1
h 1 2

3
(3 1 2 a u ) G (45)

It is evident from this equation that for u 5 3/t, that is, for the era t , , a ,

the pressure pc 5 2 (4/3) r . Due to this negative pressure the particle creation

continues for time t , , a . As the time t comes closer to the epoch time a ,
the function f( u ) changes from almost equal to one to a value less than unity.

In fact, it is evident from (37) and (40) that a u becomes close to zero as the

time t becomes larger than a . To find the behavior of the pressure pc with

respect to the changes in a u , we put equation (35) into (45) to get

pc 5 2 r H 1

3
( h 1 2)

3 1 2 a u
3 1 a u

2
2

a u
3 1 h a u
3 1 a u

(46)

3 F 3 2
4 a u

3 1 2 a u
2

a u
(1 2 h )(3 1 a u )

1
h 2 a u

(1 2 h )(3 1 h a u ) G 2 1

J
For very small a u , pc becomes positive and consequently there should be no

creation of particles due to this pressure. Even for a u 5 O(1), for example,

if a u 5 0.9, the pressure pc $ 0 for values of h either near zero or near

unity. For a u 5 0.3, pc $ 0 for all values of h in the range 0 # h # 1.

Again, it is apparent from (37) and (40) that when a u becomes of the order
of unity, the time t is around the time a . Thus, for all values of h in [0, 1],

we have pc $ 0 around the epoch time a and hence the creation of particles

brought about by the pressure pc must stop around that time. Consequently,

the usual cosmology either with MGR or GR (the h 5 1 case) must set in



2430 De

after the epoch time a . In fact, the universe then becomes a radiation-

dominated RW universe since it is no longer thermodynamically open and

matter-dominated with particle creation. Of course, one has a different situa-
tion for h Þ 1 or h 5 1 (the case of GR), although, as pointed out earlier,

the universe described in the MGR framework has no observational discrep-

ancy from the present state of the universe (Abdel-Rahman, 1997).

An important aspect of this `mild inflation’ is that in this case there are

no problems with its turning on and turning off. As seen above, this inflation

is automatically turned off at the time scale a . On the other hand, is was
turned on at the Planck-order time scale as discussed in a previous paper

(De, 1993b). It is shown there that very massive particles (more than 50

times the Planck mass mPl) might be created quantum mechanically in an

initially `anisotropically perturbed’ Minkowski space-time for a duration of

the Planck-order time. These very massive particles can make the Minkowski

space-time unstable (Nardone, 1989) and thrust it into an expansion phase,
the beginning phase of the expanding universe at this Planck-order time. De

(1993b) also considered the quantum creation of particles in the curved space-

time of this very early expanding phase of the universe. Such considerations

can indeed give results for the radiation energy density, temperature of the

universe, baryon number, etc., at the transition epoch a in agreement with
observation. The ’ particle creation era’ of the expanding phase of the universe

which was turned on from the Minkowski space must be a thermodynamically

open system, as considered here. The nature of the expansion has been

found here to be a mild inflation. Thus, the universe is switched into a mild

inflationary stage from the Planck-order time up to an epoch time a , when

it automatically, undergoes a transition into a radiation-dominated RW uni-
verse. It is an interesting fact that the highly massive particles created in this

very early period (at the Planck-order time scale) may be primordial black

holes or even known elementary particles such as muons, electrons, and

massive neutrinos, whose masses are in fact on the order of more than 50

times the Planck mass owing to the epoch dependence of particle masses as

mentioned above [see equations (21) and (22)].
In the present consideration of mild inflation, the number of particles

created during this phase can be estimated. If N(tÃ) is the number of particles

in the comoving volume a3 at the time tÃ(Planck-order time) at which inflation

is turned on and N( a 8) is that at the epoch a 8 , a , the time at which it is

turned off, then we obtain the following relation from equation (30):

N( a 8)

N(tÃ)
5

u 2( a 8)a3( a 8)[3 1 2 a u (tÃ)] [1 1 ( h 2 1) f ( u (tÃ))]

u 2(tÃ)a3(tÃ)[3 1 2 a u ( a 8)] [1 1 ( h 2 1) f ( u ( a 8))]
(47)

Here, a 8 is the time up to which the universe is matter-dominated, that is,

the relation (20) for the energy density is valid. The time interval from
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a 8 to a can be regarded as the transition era from this matter-dominated,

thermodynamically open universe to the radiation-dominated RW universe.

From (47) we have, by using the expression for the expansion scalar from (38),

N( a 8)

N(tÃ)
. 1 a 8

tÃ2
2

(48)

The time tÃrepresents the epoch time at which the masses of the particles are

54 times the Planck mass. It can be found that tÃ. 0.05tPl. If we take a 8 5
0.1 a , we find an estimate of the number of particles at the epoch a 8 in

relation to that at the epoch tÃ:

N( a 8) . 1040N(tÃ) (49)

Thus, during the phase of mild inflation the number of particles increases

by a factor of 1040. After this phase the nature of the expansion scalar changes
and the particle creation stops. In fact, the phenomenological pressure pÃin

the MGR framework is given by

pÃ5 2 r F 1 1 1
2 u Ç

u 2 2 1 ( h 2 1) 1 1

3
1

2f( u )

1 1 f( u )

u Ç

u 2 2 G (50)

With this pressure the conservation law (Bianchi identity) takes the usual

form (14). When the creation of particles due to the pressure pc stops around

t 5 a at the onset of the radiation-dominated RW era with u 5 3/2t, the

pressure pÃchanges and, indeed pÃ5 r /3 at t 5 a together with f( u ) 5 1/3.

For this era, it can be shown that (De, 1993a)

r g / r m 5 g 2 2 1 (51)

where

g 5 (1 2 ^ n 2 & /c2) 2 1/2 (52)

^ n 2 & is the mean square velocity of the particles. In the transition to the

radiation era the particles become relativistic and consequently the value of

g increases. It was argued in De (1993a) that the part of the energy density
g mnm (nm being the number density of massive particles) due to the massive

particles contributes to the radiation energy density r g , and due to the fact

that g m for large g at the epoch a becomes the relativistic mass-energy it

must be of the order of E g at that epoch, that is,

E g . g a m (53)

where g a is the value of g at t 5 a and E g is the energy per photon. This

relation (53) determines the value of g a from the known values of the particle
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mass and E g at the epoch t 5 a , since the standard cosmology follows. The

value of E g at t 5 a is 1022 cm 2 1, and m . 1013 cm 2 1 for muons (taking

them as representative particles) in units " 5 c 5 K 5 8 p G 5 1. With these
values for E g and m we find g a . 109. Consequently, from (51) it follows

that, at t 5 a ,

E g n g

mnm

. g 2
a

and using (53), we arrive at the ratio

n g

nm

. g a . 109 (54)

This ratio of the photon to particle number remains constant after the transition

from the creation to the radiation era in the GR framework because the

particle creation has ceased. In the GR framework, the present value of the
specific entropy s 0 per baryon is

s 0 5 3.7
r g 0

r m0

mb

T0

(55)

where r g 0, r m0, and T0 refer to the present values of radiation density, matter

density, and temperature of the universe, respectively. mb is the mass of a

baryon. We can use the following adiabatic constant (since, after the epoch
t 5 a , the usual cosmology follows and we are considering the GR case)

r g / r mT 5 const 5 r g 0 / r m0T0 (56)

From this, we find at t 5 a , using (51),

r g / r m 5 r g 0T/ r m0 T0 5 g 2
a 2 1 . 1018 (57)

The temperature T at the epoch a can be computed using the Einstein equation

(13) and the usual relation

r g 5 ( p 2/30)Neff T 4 (58)

where Neff is the effective number of relativistic particle spin degrees of

freedom. We find T . 1022 cm 2 1. Thus, we get

s 0 5 3.7
mb

T
3 1018 5 1.76 3 1010 (59)

(using the proton mass as the representative mass for the baryons). This value

of s 0 is in agreement with observation. In the MGR framework, however,

the specific entropy per baryon does not remain constant after the epoch a
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when particle creation due to the pressure pc stops, but creation continues in

the subsequent era governed by standard cosmology in MGR (because of

the nonconservation of matter). In fact, it is shown by Abdel-Rahman (1997)
that the specific entropy per baryon remains proportional to T1 2 h in the

standard cosmology, that is, the baryon asymmetry was much smaller in the

early universe than at present. Thus,

s 0

s a
5 1 T0

T a 2
1 2 h

(60)

where s a and T a are the corresponding quantities at the epoch time a .
However, for a value of h in the range 0.9 , h # 1, the present value of

the specific entropy s 0 per baryon is $ 108, which is still within the observa-

tional limits. In the following the production of specific entropy per baryon

as an effect of bulk viscosity in the early universe will be discussed in the

framework of MGR.

4. BULK VISCOSITY IN THE EARLY UNIVERSE UNDER MGR

In a previous paper (De, 1997b) the effect of bulk viscous pressure in

the early universe was considered in the framework of GR. Here we shall

study its effect in the MGR formulation of the early universe as a thermody-

namically open system. We shall consider bulk viscosity under equilibrium
thermodynamics. Its role in the matter creation model has been justified in

Sudharsan and Johri (1994). In this case, the stress-energy tensor is given by

T m n 5 ( r 1 p 1 pc 2 z u )u m u n 2 ( p 1 pc 2 z u )g m n (61)

where z , the coefficient of bulk viscosity, is in general a function of time.

Consequently, the Einstein equation (4) and the conservation law (18) for

the thermodynamically open universe are modified into the following forms:

u 2 5
3K

h
[ r 2 (1 2 h )( p 2 z u )] (62)

d{a3[ r 2 (1 2 h )( p 2 z u )]} 1 1±3 [( h 2 1) r

1 (5 2 2 h )( p 2 z u )]d(a3) 2
h

n
d(na3) 5 0 (63)

From equations (62) and (63), we arrive at

h
3K

(2 u Ç 1 u 2) u 1
u
3

[( h 2 1) r

1 (5 2 2 h )( p 2 z u )] 2 ( p 1 r ) 1 nÇ

n
1 u 2 5 0 (64)
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When the particle creation in the open universe stops, NÇ /N 5 0, that is,

(nÇ /n) 1 u 5 0 and the universe goes through the usual radiation-dominated

era (of course, in the framework of MGR and with bulk viscosity) for which
u 5 3/2t, and consequently u Ç 1 2 u 2/3 5 0, and we have, from (64),

h u 2/3K 5 ( h 2 1) r 1 (5 2 2 h )( p 2 z u ) (65)

Now, using equation (62) and the equation of state (23) we find, from (65),

z (t) 5 (1/ u )[ f( u ) 2 1±3 ] r (66)

Again from (62), we get

r 5
h u 2/3K 2 (1 2 h ) z u

1 2 (1 2 h )f( u )
(67)

From equations (66) and (67), by eliminating r , we finally arrive at the

following expression for the coefficient of bulk viscosity:

z (t) 5
h u

(2 1 h )K F f( u ) 2
1

3 G (68)

Now, the entropy equation in this case is given by

T
SÇ

V
5 z u 2 1

TS

V

NÇ

N
(69)

where V 5 a3(t) is the comoving volume. This equation can be written in
terms of specific entropy per particle s : given as

s Ç 5 z u 2/nT (70)

It is evident that s 5 const when z 5 0. Note that when particle creation

stops, NÇ 5 0, the relation (70) remains valid. When f( u ) 5 1/3 at the epoch

a at the onset of the radiation-dominated RW era, z (t) becomes zero and s
remains constant afterward. But in the transition era before that epoch time,

f( u ) . 1/3 and production of specific entropy per particle is possible. In fact,

in the GR formulation of the early universe as a thermodynamically open

universe with bulk visosity it was shown in De (1997b) that for the equation

of state p 5 f( u ) r , where f( u ) is given by (32), the coefficient of bulk viscosity

must vanish during the `particle production’ (matter-dominated) RW era until
the transition epoch. In this era, creation of particles and entropy production

continues with constant specific entropy per particle s . In the present MGR

formulation we consider the case of nonzero z (t) in the transition epoch just

before the epoch time a . The equation for s follows from (68) and (70):
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s Ç 5
h u 3

(2 1 h )KTn F f( u ) 2
1

3 G (71)

Now, we can use the standard cosmological invariant (which is valid from

this transition period to the present era) given by

RT 5 R0T0 5 C 5 1.18 3 1029 u (1 , u , 1.8) (72)

where R0 and T0 are the present scale factor and the temperature of the
universe, respectively. As particle creation stops, N 5 nR3 remains constant

afterward. Then, from (71) we have

s Ç 5
h u 3C3

(2 1 h )KNT 4 F f( u ) 2
1

3 G (73)

An estimate of specific entropy produced per particle during the short transi-

tion period specified as ( a 2 D a , a ) can be obtained. This estimate for the

period D a just before a is given by

D s 5
h u 3

t C
3

(2 1 h )KNT 4
t F f( u t ) 2

1

3 G D a (74)

where the subscript t represents the values for the corresponding quantities

at some intermediate epoch t of the transition period given by t 5 a 2 r
D a , 0 , r , 1. Now, from (72) it also follows that

T a /T t 5 ( t / a )1/2 (75)

In natural units, T a . 1022 cm 2 1. Also, K 5 8 p G 5 1/m2
Pl 5 t2Pl in these

units, mPl and tPl being, respectively, the Planck mass and time. Putting D a /
a 5 q, we have from (74), by using (32), (72), and (75),

D s 5 1 a
2 t 1 a

2
1

3 2 27 h C3 D a
8( h 1 2) t t2Pl NT 4

a a 2

5 1 1

3 2 2rq
2

1

3 2 27 h C3q

8( h 1 2)Nt2PlT
4
a a 2(1 2 rq)

5 2.09 3 1012 F h q

( h 1 2)(1 2 rq) 1 1

3 2 2rq
2

1

3 2 G (76)

where we have used the total particle (baryon) number of the present universe,

given by

Nb 5 2.45 3 1078u3 (1 , u , 1.8) (77)

as calculated in De (1993b). There the matter creation was considered quantum
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mechanically for the initial anisotropic fluctuation of Minkowski space-time

and subsequently in the matter-dominated RW era up to the epoch time a .

With the specification of r and q (which specify the period of transition) as
r 5 0.5 and q 5 1/3 we find an estimate of the specific entropy produced

per particle as

D s . 3.48 3 1010 h /( h 1 2) (78)

As pointed out above, the effect of viscous pressure vanishes after the epoch
a when f( u ) 5 1/3, and in the GR case, for which h 5 1, the specific entropy

per particle is, from (78),

D s . 1.16 3 1010 (79)

which remains constant afterward until the present state of the universe. This
value is also very close to that in (59). If the transition period is a bit shorter,

say q 5 1/4, the specific entropy per particle is (in the GR case) 6 3 109.

The interesting point is that this observable quantity of the present universe

was produced in the transition period just before the epoch time a . For the

MGR case, however, as pointed out earlier, this quantity decreases. Only for
a value of h in the range 0.9 , h # 1 is its present value within the

observational limits. For a smaller value of h , the transition period might

have been much longer to account for a larger production of specific entropy

per particle. This can be calculated from (73) using (75) and (77), and for

the transition period from the epoch t to the epoch a , we have

s 5
h C3

(2 1 h )KN #
a

t

u 3

T 4 F f( u ) 2
1

3 G dt

5 2.09 3 1012 h
2 1 h #

a

t

1

t 1 a
2t 1 a

2
1

3 2 dt

5 2.09 3 1012 h
2 1 h 1 2

3
ln

a
t

2 ln
3 a

2 t 1 a 2 (80)

The present value of the specific entropy per particle is given by

s 0 5 2.09 3 1012 h
2 1 h 1 2

3
ln

a
t

2 ln
3 a

2 t 1 a 2 1 T0

T a 2
1 2 h

(81)

However, a much smaller value of h from the range 0.9 , h # 1 cannot

account for the present value s 0 within its observational limits. For example,

for a transition period of t 5 10 2 26 sec, h should be equal to 0.8 to have

s 0 . 108, the observational lower limit. Even a greater transition period

cannot give rise to a value of h # 0.75 if s 0 * 108. Therefore, from this
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observational fact, it is evident that the parameter h should lie in the range

0.75 , h # 1.

It is interesting to note that in the GR formulation the usual inflation
for which u Ç 5 0 cannot produce specific entropy per particle. In fact, for

h 5 1, we have from (62) and (64)

u 2 5 3K r (82)

1

3K
(2 u Ç 1 u 2) u 1 u ( p 2 z u ) 2 ( p 1 r ) 1 nÇ

n
1 u 2 5 0

From these equations, with the use of the equation of state (23) together

with equations (20) and (25), we arrive at the following expression for the

coefficient of bulk viscosity:

z (t) 5
2 u Ç

3K u (3 1 2 a u )
[ a u 2 (3 1 a u )f( u )] (83)

Clearly, z (t) 5 0 for u Ç 5 0. Consequently, from (70), it follows that s Ç 5 0.

Thus, for the usual inflation s remains constant.

5. SUMMARY AND CONCLUDING REMARKS

In this paper we have investigated the very early universe as a thermody-

namically open system in the framework of modified general relativity

(MGR). This MGR was originally proposed by Rastall (1972) and later by

Al-Rawaf and Taha (1996a,b). MGR contains a new fundamental constant
h , which may be considered as a characteristic of the non-Newtonian regime,

besides the usual gravitational constant G. The parameter h lies in the range

0 # h # 1. Energy conservation is not imposed in this theory as a fundamental

assumption. General relativity (GR) is included here holding for h 5 1. The

early universe considered throughout this article is a spatially flat RW universe

and is a thermodynamically open system which allows irreversible matter
creation from the gravitational field, as originally proposed by Prigogine et
al. (1988, 1989). In fact, the thermodynamic conservation law has been

modified appropriately for an open system under adiabatic transformations.

A negative pressure pC is responsible for the matter creation which acts as

a source of internal energy. Again, the irreversibility of the process of particle

creation from the gravitational energy is assured from the second law of
thermodynamics. Thus, in this formalism the second law of thermodynamics

is incorporated in a more meaningful way into the evolution of the system.

The governing equations that describe the early stage of the evolution

of the universe, the open system under adiabatic transformation, have been
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derived here in the MGR framework. With the incorporation of the epoch

dependence of particle mass and the equation of state it has been possible

to obtain the equation for the expansion scalar u describing the creation era
of the early universe. The epoch dependence of particle mass is a result of

the previous investigations (De, 1991, 1997a) on `extended’ hadrons in the

microlocal space-time, which is regarded as an anisotropic Finslerian space-

time. From the equation of the expansion scalar it is possible to find the

nature of the function f( u ) in the equation of state and also a `mild inflation’

solution. During this period of inflation particles were created. It is shown
that the number of particles increased by a factor of 1040. In the case h 5
1 (that is, for GR) one can regain the governing equations obtained in previous

work (De, 1993a). Of course, the present equations have the advantage that

they can give a specific equation for the expansion scalar. In the previous

considerations it was obtained from the assumption of a vanishing phenome-

nological pressure pÃ. Of course, there as well as in the present consideration
for the GR case ( h 5 1) a trivial solution exists and it is the usual inflation.

But in MGR with h Þ 1 no such solution appears. The most important aspect

regarding the `mild inflation’ solution is that there are no turn-on and turn-

off problems which are generally prevalent in the case of usual inflation

unless extra physical conditions, such as symmetry-breaking phase transitions,
are assumed to be responsible for those transitions. On the contrary, for the

mild inflation the switch-off of this phase occurs automatically on the time

scale a ( . 10 2 23 sec) when the universe became radiation-dominated RW

era with usual (that is, not thermodynamically open) MGR cosmology and,

of course, if h 5 1, with GR cosmology. The switching on of the mild

inflationary phase happens at a Planck-order time when quantum creation of
very massive particles (of masses . 53.3mPl) in an anisotropically perturbed

Minkowski space-time (De, 1993b) makes that space-time unstable, as shown

by Nardone (1989), and ushers in an expansion phase which, in the present

case, is a mild inflation. This Planck-order `turning-on’ time marks the

beginning of the expanding universe. The highly massive particles created

might be either primordial black holes or known elementary particles, such
as, muons, electrons, neutrinos, etc. Because the mass of an elementary

particle is dependent on the epoch, the masses of the created particles (leptons)

at the Planck-order epoch are in fact as high as more than 50 times the

Planck mass.

The specific entropy per baryon was calculated for both the GR ( h 5
1) and MGR ( h Þ 1) cases. It was obtained from the consideration of the
ratio of matter and radiation energy densities at the transition epoch a after

which the mild inflationary stage turns into a radiation-dominated usual RW

(with GR or MGR) universe. Although the calculated value of the specific

entropy s per baryon for the GR case is in agreement with observations, for
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the MGR case it is within the observational limits only for values of h in

the range 0.9 , h , 1. The production of specific entropy per particle was

also considered in the MGR framework with the introduction of bulk viscous
pressure. The fact that bulk viscosity can account for the production of s
was long ago conceived by Zel’ dovich (1970) and subsequently considered

by others (see Desikan, 1997, for references). The present consideration of

specific entropy per particle in the early universe with MGR gives rise to a

value within the observational limits for h in the range 0.75 # h # 1. For

h 5 1, that is, for GR, the value of s obtained from bulk viscosity is found
to be almost the same as that obtained from the former consideration of

matter and radiation energy densities at the epoch a when the particles become

relativistic and contribute to the radiation energy density. Thus, the present

consideration limits h to the range 0.75 # h # 1.

It is interesting to note that for the lowest value of h in the above-

mentioned range the present value of the matter density parameter V 0 (which
is the ratio of the present matter energy density to the critical density) given

by V 0 5 h (Abdel-Rahman, 1997) is reduced to 75% of its value from a

standard spatially flat RW universe with GR ( h 5 1). However, this lowest

value can only increase the age of the universe marginally; specifically, by

a factor 3/(2 1 h ) 5 1.09.
In De (1993b), the quantum production of very large massive particles

(masses $ 53.3mPl) was considered. These created particles at the Planck-

order time give rise to the energy density at the epoch from which the

expansion stage of the universe begins. From this energy density one can

calculate the energy density at the time the mild inflationary phase is turned

off, that is, at the transition epoch a . It is found to be r ( a ) 5 2.16 3 1089

cm 2 4. From the ratio of the energy densities at a , as in equation (51), the

matter-energy density r m at a can be obtained. With the value of g given by

(54) we have r m( a ) 5 2.16 3 1071 cm 2 4. From this the number density of

the particles (baryons) can be found and consequently one can find the total

particle number at the transition epoch with the use of the volume of the

universe at that epoch obtained from the standard cosmological invariant
given in (72). The total particle number is * 1078 and consequently the total

entropy S . 1087. In the GR formalism, these quantities remain constant

after the epoch a when the standard cosmology sets in. Thus, these values

of the total particle number and entropy correspond to their present values

also. Now, as discussed by Blau and Guth (1987), this large value of the

entropy per comoving volume might be regarded as an alternative statement
of the flatness problem. In the standard cosmological models it is a matter

of setting this large value of S as an initial condition, but in the present case,

it achieves such a large value because of the creation phenomenon. The large

value of the particle number (baryon number) of the universe is also the
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outcome of this model. Finally, we remark that the horizon problem should not

exist in this case because the universe originates from Minkowski space-time.
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